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Abstract

This paper deals with a method to study closely the stationary solution of nonlinear dynamic systems in time domain.

This method is based on the exploitation of Karhunen–Loève decomposition with or without parametric modifications as

well as on the characteristics of localized nonlinearities. With the application of this method at first on linear models

initially condensed by Karhunen–Loève, the predictions of nonlinear responses can be obtained rapidly. This method is

adapted to a condensed linear model used in the first optimization procedure of the nonlinear dynamic behaviour. This

robust basis will be used as condensation basis of the modified model local per zone, which leads to a prediction of

vibratory responses of complex structures modified and affected by localized nonlinearities.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this study is, on the one hand, to predict at low numerical cost the nonlinear vibratory
condensed responses of structures made up of one or more sub-structures, and on the other hand to implement
condensed models adapted to the optimization procedures. Into the assemblies, one can introduce some
localized nonlinearities in the behaviour of the complete structure. These nonlinearities originate essentially
from slipping at the interfaces between two structures assembled by bolts rivets, etc.

The control of the dynamic behaviour of these complete, often complex, structures requires the construction
of Finite Elements Models (FEM) of large size. In order to reduce the numerical simulations cost, many
reduction methods of linear models have been proposed [1–4]. However, one can note that these methods
remain currently insufficient and maladjusted to optimization problems, which require reduced models that
can provide predictions of good quality. This is the case in particular for structural modifications and
nonlinear dynamics problems.

The only choices that are generally offered to the designer are either to re-use the reduction transformation
of the nominal model [5–7] or to recalculate the eigenvectors to reactualize the condensation basis of each
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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modified component [8], or to use the equivalent linearization method or the harmonic balance [9–11]. The
first option generally leads to inaccurate results whereas the second is typically not practical for reasons of
prohibitive calculation cost. The third one is effective in the frequency domain only; it rests on the resolution
of a costly iterative algorithm for the structures of large size. The difficulty of any reduction procedure is the
optimal condensation. In the proposed method, one can seek to supplement the representation of the Ritz
basis with the aim of compensating the truncation effect.

Nowadays, among the standard condensation basis is that of Karhunen–Loève (KL), also known as the
decomposition POD. This POD basis is powerful. It consists of providing a basis for the modal decomposition
of a whole lot of functions. These functions are commonly called empirical eigenfunctions, empirical
orthogonal functions or orthogonal eigenmodes. In general, there are two interpretations for the POD. The
first interpretation relates to the POD like KL decomposition [12–16] and the second one considers that the
POD consists of three methods: the KLD method, the principal component analysis (PCA) and the singular
values decomposition (SVD) [17–19]. In the recent years, multiple applications of POD methods have been
developed in various engineering fields. The POD has been integrated in several disciplines concerning image
processing, analysis of signals, in vibration of structures, dynamic chaotic systems [20–22], etc.

In this paper, a robust condensation method is proposed for use in a context of optimization, which requires
the reanalysis of modified structures and its extension to nonlinear dynamics. It is based on the exploitation of
the KL condensation method combined with a Newmark integration method (unconditionally stable). This
proposed method improves the standard reduction method by taking into account a priori knowledge of the
potential modifications of the design variables.

The proposed approach consists of supplementing the standard transformation basis of a structure by good
selected optimized residual static vectors. These vectors depend on the various design variables retained for
structure of study. Then, this approach is extended to nonlinear dynamics. In fact, the presence of one or more
nonlinearities can be comparable to a continuous family of the structures locally modified. This work shows
the effectiveness of this method in the case of one or more localized nonlinearities:

This study in the time domain comprises two parts:
�
 The first part relates to the basis formulation in linear dynamics KL, in the time domain T0
KL. Then, this

basis is extended to structures modified locally by zone, leading to a new enriched basis by static residues
representing these structural modifications: Tl

KLE ¼ T0
KL

��DTl
KL

� �
.

�
 In the second part, an extension of the enriched basis is proposed for the case of nonlinear structures. In
fact, the idea consists of enriching the time KL transformation by static residues due to the nonlinear
modifications: Tnl

KLE ¼ T0
KL

��DTl
KL DTnl

KL

��� �
.

Finally, this method is compared with the standard modal condensation method (CM), which is enriched by
residues associated with the parametric modifications and to localized nonlinearities, based on the modal
properties of the associated linear system.

2. Formulation of the reanalysis problem of nonlinear structures

The second-order differential equation corresponding to the movement of a nonlinear modified system is
expressed in the following matrix form:

ðMþ DMÞ€yðtÞ þ B_yðtÞ þ ðKþ DKÞyðtÞ þ fnlðð_yðtÞ; yðtÞÞ ¼ feðtÞ (1)

Eq. (1) can be written under a new form as follows:

M€yðtÞ þ B_yðtÞ þ KyðtÞ þ fnlðð_yðtÞ; yðtÞÞ ¼ feðtÞ þ fDðtÞ

with fDðtÞ ¼ � DM€yðtÞ þ DKyðtÞð Þ (2)

where M, K and B are, respectively, the mass, stiffness and damping matrices, which are real, symmetric,
positive definite; fD(t) is the parametric modifications forces; fnlðð_yðtÞ; yðtÞÞ represents the nonlinear forces of
stiffness and damping in the time domain; and fe(t) is the external applied force.
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One is particularly interested in Eq. (2) comprising of several nonlinearities of the cubic stiffness type. Each
nonlinearity results in the presence of a force proportional to the cubic displacement in this model:

fnlij ðyðtÞÞ ¼ g yðtÞð Þ
3 (3)

where g is a coefficient of the nonlinearity in N/m3.
The real nonlinear force of the system (2) defined between two points (i,j) of the structure is written as

follows:

fnlðyðtÞÞ ¼ 0 . . . 0 . . . gðyi � yjÞ
3 . . . 0 . . . gðyj � yiÞ

3 . . . 0
h iT

(4)

where yi and yj are, respectively, displacement at point i and displacement at point j.
The solutions of this nonlinear problem can be obtained only using one iterative numerical algorithm and

the calculation of these solutions can be considered only in the discrete case, thus leading to a prohibitory
calculation cost.

As such, an approach in the time domain is proposed based on KL condensation, allowing one to treat
condensed models having modified design parameters in an optimization context, without carrying out a new
reanalysis of the complete model on each modification level. Then, this approach is extended to a nonlinear
context. The presence of one or more nonlinearities can be comparable to a continuous family of locally
modified structures; the nonlinear design variables are then used for the generation of the static residues basis.
3. Reanalysis of nonlinear structures by the enriched KL condensation method

3.1. Formulation of the standard transformation KL

The decomposition of KL is largely used in order to determine the eigenfunctions of a linear system
calculated starting from a set of data generated through this system [12]. In fact, any set of data can be broken
up into an optimal series of orthogonal empirical eigenfunctions using the KL procedure. These optimal
eigenfunctions are extracted starting from the temporal or frequency samples from the responses of the
system. The extraction of a minimal number of functions, constituting it possible to collect the maximum
energy of the system, constitutes a criterion of selection of KL transformation. Consequently this
transformation is used for the linear systems as a tool for condensation [13,14].

The KL procedure [15] consists of selecting a series of optimal modes [f1(x), f2(x),y,fM(x)] starting from
a series of temporal responses, temporal condensation y(x, t). These functions f(x) are obtained by
maximizing the mean of the internal product between y(x, t) and f(x):

Maximiser
ðf; yÞ
� �
ðf;fÞ

(5)

where ðf; yÞ ¼
R
O fðxÞyðx; tÞdO is the internal product defined in space O. dh i is the mean operator.

The mean is defined as a correlation function of two points as follows:

Eðx; x0Þ ¼ yðx; tÞyðx0; tÞ
� �
¼

1

N

XN

i¼1

yðx; tÞyTðx0; tÞ (6)

The normalization condition, (f, f) ¼ 1, is imposed in order to obtain a unique solution.
Consequently, the condition on Eq. (5) is f(x), which represents the eigenfunction of the eigenvalues

problem according to Z
O

Kðx;x0Þfðx0; tÞdx0 ¼ lfðxÞ (7)

where K(x, x0) is a non-negative Hermitain operator.
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The solution of the optimization problem (5) is given by the eigenfunctions fi(x) of the integral equation (7),
also named proper orthogonal modes (POMs). The corresponding eigenvalues li(liX0) are named proper
orthogonal values (POVs).

Among the resolution methods of the problem (8), one distinguishes that which was developed by
Taehyoun [13]. This method consists in exploiting the sampling procedure for which POMs can be represented
as follows:

fðxÞ ¼
XN

k¼1

akykðtÞ (8)

The substitution of the relation (8) in Eq. (7) led to the eigenvalues problem according to

Ca ¼ la (9)

cnk ¼
1

N
ðyn; ykÞ ¼

1

N

Z
O

ynðx
0ÞyT

k ðx
0Þdx0 (10)

where cnk is the symmetric, positive definite covariance matrix and a ¼ (a1,y,aN) are the eigenvectors of the
problem (9).

The eigenvectors of Eq. (9) are substituted in Eq. (8), generating the eigenfunctions f(x).
The order of the eigenfunctions f1(x), f2(x),y,fN(x) corresponds to the order of the amplitude of the

eigenvalues classified in the decreasing order (l14l24?4lN).
The majority of the structural or energetic characteristics are collected by the first eigenfunctions [14]. These

eigenfunctions satisfy the following orthonormality relations:

ðfn;fkÞ ¼
1 ðn ¼ kÞ

0 ðnakÞ

(
(11)

Each member of the unit is reproduced by a modal decomposition of the functions f(x):

ynðxÞ ¼
X

k

akfkðxÞ (12)

Eq. (11) is the decomposition of KL. The series fk(x) constitutes the empirical base:

T0
KL ¼ ½f1; . . . ;fk� (13)

The importance of the particular mode KL is determined by the amplitude of li, which represents
hjjðfi; yÞjj

2i in the time domain. The retained (r) eigenfunctions (r5M) for the continuation of this study
correspond to the first (r) eigenvalues li (l14l24?4lr).
3.2. Proposition of an enriched KL transformation

It is possible to use an alternative solution that consists of supplementing the transformation matrix for a
new basis of optimized vectors built starting from the design variables that are modified. The innovation of
this approach lies in its use of a priori knowledge of the design problem and in the localization of the potential
modifications by retaining the amplitude of modifications like one of the variables. The objective is to build an
optimal set, system of Ritz vectors while being based on the nominal model to enrich the matrix of standard
transformation (Fig. 1).
3.2.1. Calculation of the static residues vectors for the structural modifications

In order to avoid starting the design cycle of the modified structures in an optimization procedure from the
beginning, it is necessary to enrich the KL standard basis of the linear model by a best selection of static
vectors. In fact, one distinguishes in this work two sets of parameters: parameters (ki) and (mi) acting on the
stiffness and the mass. The initial FEM is represented by its matrices K and M. The FEM of the modified
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Fig. 1. Global algorithm of the prevision nonlinear response with the enriched condensation method.
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system is represented by its matrices Km and Mm such as

KmðkiÞ ¼ Kþ DKðkiÞ

MmðmiÞ ¼Mþ DMðmiÞ (14)

The initial model is not entire modified, but at least in large influential zones of the structure or
substructure. To account for the effect of the modifications, the first step consists of fixing, estimating, or
localizing the modifiable zones of the model and their associate design parameters:

Kzone ¼
Xnelem
e¼1

Kelem
e

Mzone ¼
Xnelem
e¼1

Melem
e (15)

One can write the relation (15) in the form:

DK ¼
Xnp

i¼1

Kzone
i ðDkiÞ

DM ¼
Xnp

i¼1

Mzone
i ðDmiÞ (16)

where Dki and Dmi are the parameter variations of ki and mi. In general, the parameters ki, mi intervene in a
nonlinear way in the matrices of corrections.

For the plate model, the parameter setting concerning the stiffness is carried out by uncoupling the effects of
membrane and flexion. One can decompose the total elementary stiffness matrix into membrane stiffness Kzone

m

and flexion stiffness Kzone
f . The thickness, noted ‘‘e’’, with a linear contribution in membrane and cubic

contribution in flexion, results in

Kzone ¼ eKzone
m þ e3Kzone

f (17)

A weak variation thickness ‘‘De’’ involves a variation of stiffness Kzone(De) defined by

KzoneðDeÞ ¼
De

e
ðeKzone

m þ 3e3Kzone
f Þ (18)
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In the absence of the nonlinearities and external forces, the conservative system (2) becomes

M€yðtÞ þ KyðtÞ ¼ fDðtÞ

with fDðtÞ ¼ � DM€yðtÞ þ DKyðtÞð Þ (19)

The enrichment of the standard transformation KL (Eq. (13)) by DTl
KL, the static residues associated with

the potential structural modifications, is based on the approximation

fDðtÞ ’ � DM€y0ðtÞ þ DKy0ðtÞ
� �

(20)

where y0(t) is the response of the initial system.
For each zone (i ¼ 1, 2,y, np), a force sub-basis F

D can be defined from the initial modal properties
(deterministic eigensolutions) and the stiffness and mass matrices of the zones:

FD ¼ ½F
1
D;F

2
D; . . .F

np
D � (21)

The representative force basis of the modifications group by the concatenation of the sub-basis FD, followed
by singular values decomposition (SVD), leads to linear independence of the columns of this basis. From this,
the static vectors can be constructed:

RD ¼ K�1FD (22)

In practice, the resolution of the problem (2) without condensation leads to high numerical costs and
sometimes it can be very difficult. The condensation of this model by a standard reduction method is proving
insufficient in terms of robustness towards parametric modifications. Therefore, it is proposed that a dynamic
condensation method can be exploited by adapting it to nonlinear models.

The reduction basis Tl
KLE, which is common to both the initial and the modified systems, is constructed by

the nominal basis T0
KL and the static displacements, which are associated with a set of static loads FD that are

representative of the potential perturbations (Eq. (20)):

Tl
KLE ¼ T0

KL

��DTl
KL

� �
(23)

where T0
KL is the nominal reduction basis, DTl

KL is the correction basis due to structural modifications and
Tl
KLE is the robust extended basis.
In practice, the nominal reduction basis T0

KL can be a simply truncated modal basis in the direct dynamic
condensation (CM).

3.2.2. Calculation of the residues static vectors for localized nonlinearities

In this case, one is located in the nonlinear field in absence of structural modifications. The nonlinear
stiffness matrix DKnl is added to the matrix of initial stiffness in the form:

Knl ¼ Kþ DKnl (24)

In the same manner, one can apply the robust condensation method developed previously. In fact, it is
possible to build static residues associated with the nonlinear forces. For that, it is enough to know the
elements that are submitted to stiffness modifications. Either DKnl the stiffness matrix or only the coefficients
associated with the dof of the nonlinear elements with the same types are not null:

DKnl ¼

0 0 � � � 0 � � � 0

0 0 � � � 0 � � � 0

0 0 � � � knl
� � � 0

0 0 � � � 0 � � � 0

2
6664

3
7775 (25)

Then, one can calculate an associated forces basis Fnl
D ¼ DKnlB, then the static residues associated with the

forces basis Rnl
D ¼ K�1Fnl

D . The response vectors basis B can be either a modal basis resulting from the
associated conservative linear system (SCA), or a KL basis. In fact, if one uses a basis modal truncated with
first modes B ¼ Y0 and if a basis KL is used, B ¼ T0

KL.
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3.2.3. Enrichment of the KL basis by static residue vectors in the presence of structural modifications and

localized nonlinearities

Following the structural modifications and the nonlinear modifications, the enrichment of the KL basis is
written as

Tnl
KLE ¼ T0

KL

��DTl
KL DTnl

KL

��� �
(26)

4. Nonlinear response of the modified model condensed by enriched KL

The equations governing the modified nonlinear responses condensed by the enriched transformation KL,
Tnl
KLE, at the time tn+1 can be written in the following form:

Mc
m €y

c
nþ1ðtÞ þ Bc

m _y
c
nþ1ðtÞ þ Kc

my
c
nþ1ðtÞ þ fc

nlðð_y
c
nþ1ðtÞ; y

c
nþ1ðtÞÞ ¼ fc

eðtÞ (27)

where Mc
m, Kc

m and Bc
m are, respectively, the condensed modified mass, stiffness and damping matrices.

fc
nlðð_y

c
nþ1ðtÞ; y

c
nþ1ðtÞÞ and fc

eðtÞ are, respectively, the vector of the condensed nonlinear forces and the applied
condensed external forces.

In this paper, the nonlinearity introduced is of cubic stiffness type (Eq. (28))

fc
nlðð_y

c
nþ1ðtÞ; y

c
nþ1ðtÞÞ ¼ g yc

nþ1

� �3
(28)

where g is the nonlinear stiffness coefficient.
Eq. (29)then makes it possible to define the residues vector <ðyc

nþ1Þ as follows:

<ðyc
nþ1Þ ¼Mc

m €y
c
nþ1ðtÞ þ fðð_yc

nþ1ðtÞ; y
c
nþ1ðtÞÞ � fc

extðtÞ (29)

Also yc
nþ1

� �k
an approximation of the solution yc

nþ1 obtained with the iteration k, the residual equation can
be written with a satisfactory precision as follows:

<ðyc
nþ1Þ

kþ1
�<ðyc

nþ1Þ
k
¼ Sðyc

nþ1Þ
k: ðyc

nþ1Þ
kþ1
� ðyc

nþ1Þ
k

� �
(30)

Sðyc
nþ1Þ

k is the matrix of the gradients matrix at the iteration k.
The nonlinear condensed modified system (Eq. (30)) is solved iteratively by exploiting the Newton–Raphson

method.

5. Comparison criteria of the time responses

In order to quantify the comparison of the obtained predictions, the temporal moments are used as a
comparison criterion. These temporal moments Mi(ts) have been proposed for the transitory analysis [23].
They are similar to the static moments and are calculated as balanced summations of the quadratic temporal
signal:

MiðtsÞ ¼

Z þ1
�1

ðt� tsÞ
i yðtÞ2
� �

dt (31)

where ts corresponds to a temporal shift and the index i represents the order of the moment. For more
simplicity, the temporal moments Mi are defined for Ts ¼ 0.

These temporal moments, Mi(ts), can be normalized to generate what is referred to in the literature as the
central moments [23,24]. The central moments are defined and calculated as follows:

E ¼M0 : energy ðm2sÞ;

T ¼ M1

M0
: central time ‘‘Centroid’’ ðsÞ;

A2
e ¼

E
D
: root energie amplitude ðm2Þ;

D2 ¼ M2

M0
� M1

M0

	 
2
D : rms duration ðsÞ

(32)
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Eqs. (31) and (32) show that the calculation of the temporal moments starting from the temporal signals is
traditional. The temporal moments with a limited band have been proposed to analyse the signals in a specific
frequency band [24].

The first central moment E represents the total energy of the signal. It is also equal to the value of the
autocorrelation function of Eq. (5) for null times. The amplitude of the root of energy Ae represents the
amplitude through the entire signal. It differs from E by the normalization factor equal to the inverse
characteristic duration D. The central time T or centroide is defined as the time indexed ts that produces a null
first moment, which is ts such as M1(ts) ¼ 0.

While looking to the distribution of the temporal energy, T represents a point of balance, which is the
moment where half of the energy is passed and the other half has just arrived to the sensor. The duration
within the meaning of least square D describes the dispersion of the wave form. A basic rule is a significant
part of the transitory energy must be with 2 or 3 the rms duration in the vicinity of the centroide T it is
identical to the standard deviation in static.
6. Numerical simulations
Example 1. The considered structure (Fig. 2) is a system with three beams linked between them by two
nonlinear springs K1 and K2, respectively, at the points F, G, and H. The structure is embedded at points A, B,
C and with two springs nonlinear K3 and K4 at the points D and E.

The FEM contains 288 dof. The nominal mechanical characteristics are: E0 ¼ 2.1� 1011N/m2 ;
r0 ¼ 7800 kg/m3. The nonlinear coefficients g(i ¼ 1,y,4) are defined in Table 1.

Six modifications per zone are defined (Fig. 2). The Young modulus of the six modification zones E(i ¼ 1,y,6)

is equal to 2.1� 1011N/m2. The density for the same modified zones r(i ¼ 1,y,6) is equal to 7800 kg/m3.
1.5m1.5m x

y

6 m 

3 m

K 3 K 4

K 1 K2K1

A 

D E

F G H

Zone 1    Zone 2 Zone 3 

Zone 4 

Zone 5 

Zone 6 �3 �4

�2
�1

B C

Fig. 2. Finite Elements Model of the structure with three beams.
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Table 1

Nonlinear parameters

Nominal values Description

g1 ¼ g4 108 Nonlinear stiffness of the spring 1 and 4 (N/m3)

g2 ¼ g3 106 Nonlinear stiffness of the spring 2 and 3 (N/m3)
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Fig. 3. Errors on the eigensolutions: (a) relative eigenfrequency errors and (b) relative eigenvectors errors.
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The frequency band of analysis [0,500Hz] contains the first 15 modes. The structure is excited with dof
no. 71 (point F) by a force of 104N. The observation point is dof no. 179 (point G).

For this first example, one can select 100 samples ‘‘snapshots’’. The basis is then truncated to the first 30
eigenfunctions. In the same way, the condensed matrices by the standard CM method have identical size as
those condensed by KL.

The curves in Figs. 3(a) and (b) illustrate, respectively, the eigenfrequency errors and the eigenvectors errors
on the eigenfrequencies and eigenvectors between the linear condensed model by the KL method or by the CM
method and the linear reference model.

It is noted that the errors on the eigensolutions resulting from the two methods are acceptable on the first 12
modes.

On the last three modes, the CM method always presents a good coherence with the reference, contrary to
as well as the KL method.

Figs. 4(a) and (b) illustrate, respectively, the nonlinear responses without structural modifications for the
same observation position (point F: dof no. 71) and the zoom for the same responses between [0, 0.05] s. One
can note that the nonlinear condensed response issued from the direct condensation method is consistent with
reference to the beginning and somewhat consistent on the levels of the peaks between [0, 0.1] s. On the other
hand, the nonlinear response condensed by the KL method is always consistent with the reference.

Table 2 shows that the energetic criteria for the reference and the CM method are not identical. On the
contrary, the values resulting from the KL method are confused with those of the reference. Table 3 shows the
parametric modifications of the structure per zone.

In the case of parametric modifications, the initial basis T0
KL or T0

CM is not capable of representing correctly
the dynamic behaviour of modified structures. Therefore, it is necessary to enrich this initial basis by static
residues representing the error forces. These residues are well selected, thus avoiding the systematic use of all
the linearly independent columns after SVD.
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Table 2

Energy criteria (case: without structural modification)

E (m2 s) T (s) D (s)

Exact response 2.61� 10�2 0.090 0.0716

CM response 2.54� 10�2 0.093 0.0713

KL response 2.61� 10�2 0.09 0.0716

Table 3

Parametric modifications

Structure 1: three beams structure

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

E � 50 � 50 � 50 � 15 � 15 � 15

r � 20 � 20 � 20 � 50 � 50 � 50

M.-L. Bouazizi et al. / Journal of Sound and Vibration 320 (2009) 668–690 677
The KL method is first applied and the initial model with 288 dof is reduced to a condensed one with 30 dof
(KL_30). The KL method is then enriched by 10 static residual vectors, resulting in a new robust condensed
model with 40 dof (KLE). These residual vectors are portioned as 6 vectors due to structural modifications
and 4 vectors due to nonlinear modifications.

Fig. 5 represents the MAC matrix between modes of the reference modified system and those of the
reference initial system. This MAC illustrates the level of the applied modifications. Also, Table 4 shows the
gaps in frequencies.

The non-enriched standard condensation cannot allow making the predictive calculation of the modified
structure with a sufficient precision. This is illustrated by the MAC matrices (Figs. 6(a)–(c)) given for this
example, which show the distance in form (eigenvectors) between the reference modified model (without
condensation) and the condensed modified model using the enriched condensation method (KLE): Fig. 6(a)
standard condensation KL_30, Fig. 6(b) standard condensation KL_40 (same size as enriched basis) and
Fig. 6(c) enriched condensation KLE. The last enriched basis allows a good prediction of the first 13 global
modes.
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Fig. 5. MAC matrix between modes of the reference modified system and those of the initial reference system.

Table 4

Eigenfrequency of the initial/modified models

Eigenfrequency (Hz)

Initial model Modified model

1 67.976 46.231

2 95.644 64.702

3 133.735 65.851

4 142.261 72.930

5 142.295 82.232

6 185.138 83.623

7 201.836 111.046

8 208.937 112.206

9 262.264 150.647

10 314.906 193.494

11 318.564 206.731

12 404.587 273.620

13 423.465 287.004

14 423.692 300.708

15 438.267 376.921
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Table 5 shows the composition of the transformation matrices according to the used method.
Figs. 7(a) and (b) illustrate the condensed modified nonlinear responses resulting from the reference,

the CME and KLE methods at the excitation position (dof no. 71) and the observation position
(dof no. 179). The condensed modified nonlinear responses concern, respectively, the excitation point and the
observation point. It is noted that these responses resulting from the proposed KLE method are well
consistent with the reference. The responses resulting from the CME method are inconsistent with the
reference.
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Table 5

Composition of the condensation basis

KL40 method (initial) CME method KLE method

Modes POM 40 30 30

Residues 0 10 10

Total 40 40 40
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Fig. 7. Nonlinear responses resulting from the reference and the condensed modified models (dof no. 71: excitation position and no. 179:

observation position): (a) responses at the excitation position (dof no. 71) and (b) responses at the observation position (dof no. 179).
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Table 6 illustrates the eigensolutions calculated by the KL_40, CME and KLE methods. It is shown that the
KLE method gives good accuracy when predicting the 15 eigenmodes, compared with the standard KL_40
method, which gives more limited prediction level.

In order to highlight the performances of the reduced models in terms of calculation costs, the CPU time
between the condensed and reference models can be compared. Examination of Table 7 shows the good
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Table 6

Error on the eigensolutions resulting from the three methods

Mode number KL initial CME KLE

40 40 40

ef ev ef ev ef ev

1 0.309 1.104 0.000 0.001 0.000 0.000

2 0.765 2.958 0.006 0.008 0.000 0.000

3 1.737 8.723 0.003 0.023 0.000 0.000

4 0.353 4.765 0.005 0.015 0.000 0.000

5 0.805 7.114 0.008 0.114 0.000 0.000

6 0.447 3.416 0.044 0.416 0.000 0.000

7 0.052 0.685 0.052 0.385 0.000 0.000

8 0.270 2.768 0.027 0.410 0.000 0.000

9 0.206 3.313 0.026 0.373 0.000 0.000

10 1.629 10.624 0.029 1.124 0.000 0.000

11 0.486 4.615 0.486 0.615 0.000 0.000

12 1.403 18.047 0.403 1.047 0.000 0.001

13 0.736 21.476 0.736 2.293 0.000 0.002

14 7.477 36.074 2.390 1.302 0.000 0.009

15 6.016 47.394 0.070 2.140 0.001 0.220

Table 7

CPU time–reduction ratio

CPU times (min)

REF CME KLE

100 3 2

Reduction ratio (%) 97 98

Table 8

Energetic criteria (case: with structural modification)

E (m2 s) T (s) D (s)

Exact response 10.1� 10�3 0.064 0.0555

CME response 13.5� 10�3 0.067 0.0135

KLE response 10.1� 10�3 0.064 0.0555
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performances of the proposed method, which exploits the KLE method or the CME method. In fact, the
reduction ratio in CPU time is 98% compared to the reference.

After the structural modifications carried out on the structure and in the presence of localized nonlinearities,
the energetic criteria for the reference and CME method are not identical (Table 8). But those for the reference
and KLE method have a good concordance.

In the second example, one is interested only in the KLE method because the CME method is limited in this
first numerical example.

Example 2. The structure considered (Fig. 8) is a system of plates in the shape of a square. Its FEM contains
4140 dof. The geometrical and mechanical characteristics are: e ¼ 1� 10�3m; E0 ¼ 2.1� 1011N/m2;
r0 ¼ 7800 kg/m3. Six modification zones are defined (Fig. 8 and Table 9). The frequency band of analysis
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Fig. 8. Square FEM—definitions of the modifications per zone.

Table 9

Parametric modifications

Structure 2: assembly of plates

E: zone 1 e: zone 2 E: zone 3 E: zone 4 e: zone 5 E: zone 6

Modifications per zones � 1.5 � 0.25 � 1.5 � 1.5 � 0.25 � 1.5
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contains the first 10 modes. The structure is excited at three points (dof no. 842, dof no. 2127 and dof no. 3770)
at the same time with a force of 100N. The nonlinear coefficients g(i ¼ 1,y,4) are, respectively, defined as
follows: g1 ¼ g4 ¼ 1010N/m3 and the g2 ¼ g3 ¼ 108N/m3.

By applying the KL method, one can consider 550 samples ‘‘snapshots’’ with 200 modes in the useful
frequency band.

One can present in Fig. 9 the distance in form between the first eigenvectors of the initial model and the
modified model. The gaps in frequencies are shown in Table 10.

The enrichment of the transformation basis KLE (Table 11) is realized by using 80 static residues (76
residues vectors due to structural modifications and four residues vectors due to nonlinear modifications).

The modified eigenvectors calculated from the modified reduced models are reconstituted through the
respective reduction basis and then compared with the modified eigenvectors obtained from the reference
model. One can illustrate the distance in form between these vectors for the KL and KLE methods. Figs. 10
and 11 present, respectively, the relative errors on the eigensolutions and the distance in form between these
reconstituted modified eigenvectors obtained using the KL and KLE methods and the reference modified
eigenvectors.

In Figs. 12(a) and (b), the results of the condensed model (enriched basis: KLE) are compared to those of
the reference. The examination of these results shows that the exploitation of the KL basis allows a good
dynamic representation in time domain.

Examination of Table 12 shows the good performances of the proposed method, which exploits the KLE
method. In fact, the reduction ratio in CPU time is 80% compared to the reference.

Note that the calculation of the nonlinear responses is carried out on a PC Intels Pentiums 4 CPU
3.20GHz with 1GB of RAM.
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Table 10

Eigenfrequency for initial/modified models

Eigenfrequency (Hz)

Initial model Modified model

1 53.570 355.68

2 66.977 409.24

3 189.38 632.70

4 307.91 750.54

5 508.81 812.72

6 550.34 829.06

7 605.41 862.43

8 666.84 985.20

9 759.94 1338.10

10 803.32 1461.10

Table 11

Composition of the condensation basis

KL280 initial model KLE model

POM modes 280 200

Residue 0 80

Total 280 280
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Fig. 9. MAC matrix between modes of the reference modified system and those of the initial reference system.

M.-L. Bouazizi et al. / Journal of Sound and Vibration 320 (2009) 668–690682
After the structural modifications carried out on the structure and in the presence of localized nonlinearities,
the energetic criteria for the reference KLE method have a good concordance (Table 13).

Example 3. In this example, we consider a linear steel beam embedded on the left and linked with a localized
nonlinear system on the right. The nominal mechanical characteristics are E ¼ 2.1� 1011N/m2 and
r ¼ 7800 kg/m3. The length of the beam is L ¼ 0.3m, the width is b ¼ 0.0366m and the thickness is
h ¼ 0.005m.

A mass (m1 ¼ 0.2 kg) is attached to the free end of the beam with a linear spring stiffness (K1 ¼ 2500N/m).
It is also attached to a nonlinear 1-dof system (cubic stiffness K2 ¼ 108N/m3, linear damper C1 ¼ 0.25Nm/s.
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Table 12

CPU time–reduction ratio

CPU times (h)

REF KLE

19 4

Reduction ratio (%) 80

Table 13

Energy criteria (case: with structural modification)

E (m2 s) T (s) D (s)

Exact response 45.47� 10�2 0.509 0.2322

KLE response 41.04� 10�2 0.509 0.2322

A

UA

UB
C1

Bm1

K2

Fig. 13. Complete system: beam with nonlinear system.
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The frequency band of analysis is [0–4000Hz] and contains the first 10 elastic modes. The structure is
excited at point A by a harmonic force (F(t) ¼ F0*cos(ot)). One can also simulate the initial condition with
velocity V0 at the same point A (Fig. 13). The structure is discretized with a 2D beam finite element (2 dof/
node). The full FEM contains 101 dof.

In this case, one can select 80 samples ‘‘snapshots’’. The initial KL basis is then truncated to the
first 15 eigenfunctions defined by Eq. (13). The curves in Fig. 14 illustrate the eigenfrequencies and the
eigenvectors errors between the linear condensed model by the initial KL method containing 15 vectors and
the linear reference model. It is noted that the errors on the eigensolutions resulting from the KL method is
acceptable on the first 8 modes. Table 14 illustrates the reference eigenfrequencies of the initial linear model
(K2 ¼ 0).

To study the robustness of the proposed KLE transformation (16 vectors) versus changes of initial (velocity:
V0) or forcing conditions (amplitude F0 of excitation) in the nonlinear system, two configurations A and B are
studied.

6.1. Initial conditions

6.1.1. Configuration A

In this configuration, we propose to study the chaotic motion with initial conditions V0 ¼ 6m/s. Fig. 15
shows the reference of the dynamic response and the diagram of phase at dof UB.

Fig. 16 compares the nonlinear dynamic responses of the full model (reference) and the 16 dof condensed
model by the KLE method (16 vectors in the basis).

It is noted that in this regime, the proposed method can correctly predict the reference response in a time
interval selected a priori.



ARTICLE IN PRESS

Table 14

Eigenfrequencies

Initial eigenfrequency linear model (Hz)

1 10.3

2 28.7

3 106.8

4 294.8

5 576.8

6 953.1

7 1423.6

8 1988.3

9 2647.1

10 3400.1
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Fig. 15. (a) Nonlinear response at dof UB and (b) diagram of phase at dof UB.
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Fig. 16. Nonlinear responses calculated with a reference and an enriched KLE model at dof UB.
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Fig. 17. Nonlinear responses calculated with a reference and an enriched condensed model: (a) dof UA and (b) dof UB.
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6.1.2. Configuration B

In this new configuration, two levels of perturbation of initial conditions are considered:
�
 Small perturbation of the initial velocity (V0 ¼ 6m/s) equal to +5% is introduced. The previous enriched
basis (KLE) is used to represent the new condensed nonlinear response (Fig. 17).
The dynamic prediction is satisfactory for this type of nonlinear regime and the level of change introduced
on the initial conditions.

�
 Important perturbation of initial velocity (V0 ¼ 6m/s) equal to +20% is introduced. Fig. 18 illustrates the

nonlinear responses at points A and B. We note that the previous KLE method cannot correctly predict the
reference of nonlinear regime with this level modification introduced on the initial conditions.

6.2. Forcing conditions

6.2.1. Configuration A

In this configuration, one can propose to study the periodic and quasi-periodic motions with F0 ¼ 10N
(V0 ¼ 0m/s).
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Fig. 18. Nonlinear responses calculated with a reference and an enriched condensed KL.
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To obtain this nonlinear comportment, the value of the viscous damper C ¼ 2.5Nm/s and
K2 ¼ 6.25� 106N/m3. Fig. 19 shows the reference of the dynamic response of UA. It is notable that a limit
of cycle is clearly illustrated in the diagram of phase.

Fig. 20 shows the response at point UB. The diagram of phase illustrates a clearly cycle limit.
Fig. 21 illustrates the nonlinear responses of dof UA and UB calculated with the full and the reduced KLE

model.
It is noted that in periodic or quasi-periodic regime, the proposed method can predict with great precision

the reference response in a time interval fixed a priori.

6.2.2. Configuration B

In this new configuration, two levels of perturbation of forcing conditions are considered:
�
 Small perturbation of the excitation force (F0 ¼ 10N) equal to �5% is introduced. The previous enriched
basis (KLE) is used to represent the new condensed nonlinear response (Figs. 22a and b).
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Fig. 21. Comparison of nonlinear responses: reference model/enriched KLE model: (a) nonlinear response at dof UA and (b) nonlinear

response at dof UB.
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The prediction is satisfactory for this type of nonlinear regime and the level of change introduced on the
initial conditions.

�
 Important perturbation of the excitation force (F0 ¼ 10N) equal to +20% is now introduced. Fig. 23

illustrates the nonlinear responses of dof UB.

The various simulations shows that the enriched basis KLE is able to predict the behaviour of the perturbed
or modified system (parametric modifications, initial or forcing conditions perturbations, etc.) provided they
are within reasonable limits (small to moderate modifications) of change in the design phase. This is also
verified in linear structural using an approximate reduced linear basis.

The proposed method can be applied mainly to nonlinear structures with parametric modifications.
It can also be used to predict the behaviour of nonlinear structures as a result of changes in initial conditions

and loads, taking precautions as regards the level of modifications considered.
Regarding the validity domain of the proposed method, it is difficult to establish a quality criterion for this

domain. The reduction approach based on an approximate Ritz or KL basis has generally empirical
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Fig. 22. Comparison of nonlinear responses: reference model/enriched KLE model: (a) nonlinear response at dof UB and (b) nonlinear

response at dof UB.
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Fig. 23. Nonlinear responses at dof UB.
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qualitative criteria based on the number of normal modes taken into account in the basis and the level of
modifications introduced.

In the case of nonlinear structural dynamics, it is also possible as shown by the previous simulations that the
same criteria can also be used.
7. Conclusions

In the nonlinear time domain, a method has been proposed for the purpose of studying the behaviour of
models with or without structural modifications in the presence of localized nonlinearities of models. This
proposed method gives satisfactory results.

Before nonlinear analysis, the study of robustness by the modal condensation method or the
Karhunen–Loève method versus parametric modifications shows that neither can be privileged.

In the case of the local modifications per zone, it is necessary to enrich the classical basis by additional
vectors obtained from static loads representing the modification forces. These additional vectors are properly
selected. This enriched basis allows the construction of robust condensed models.
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Condensed modified model by the KLE method is conformed with the reanalysis needs in the optimization
procedures of nonlinear dynamic behaviour. In fact, the extension of these robust models in nonlinear
dynamic leads to the obtention of predictive nonlinear condensed modified models. The comparison of CPU
time necessary for the calculation of nonlinear reference in time domain and condensed models show the
advantages of the KLE method applied in structures in the presence of localized nonlinearities.

These robust condensed nonlinear models can be used in the multi-objectives optimization procedures.
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